
International Journal of Computer Science & Emerging Technologies (IJCSET) 140

Volume 1 Issue 2, August 2010

Simulation Environments for Wireless Sensors

Networks

Basavaraj.S.M1, V.D.Mytri2 and Siddarama.R.Patil3

1 Appa Institute of Engineering and Technology, Gulbarga,Karnataka,India

2School of Computer Science and Engineering, XYZ University,

3 P.D.A College of Engineering GUlbarga ,Karnataka

Corresponding Adresses

{first author, second author, third author}@email.com

Abstract: The emergence of wireless sensor networks brought

many open issues to network designers. Traditionally, the three

main techniques for analyzing the performance of wired and

wireless networks are analytical methods, computer simulation, and

physical measurement. However, because of many constraints

imposed on sensor networks , such as energy limitation,

decentralized collaboration and fault tolerance, algorithms for

sensor networks tend to be quite complex and usually defy

analytical methods that have been proved to be fairly effective for

traditional networks. Furthermore, few sensor networks have come

into existence, for there are still many unsolved research problems,

so measurement is virtually impossible. It appears that simulation is

the only feasible approach to the quantitative analysis of sensor

networks. The goal of this paper is to aid developers in the selection

of an appropriate simulation tool.

.

1. Introduction

The goal for any simulator is to accurately model and predict

the behavior of a real world environment. Developers are

provided with information on feasibility and reflectivity

crucial to the implementation of the system prior to investing

significant time and money. This is especially true in sensor

networks, where hardware may have to be purchased in large

quantities and at high cost. Even with readily available

sensor nodes, testing the network in the desired environment

can be a time- consuming and difficult task. Simulation-

based testing can help to indicate whether or not these time

and monetary investments are wise. Simulation is, therefore,

the most common approach to developing and testing new

protocol for a sensor networks. Many published papers

contain results based only on experimental simulation. There

are a number of advantages to this approach: lower cost, ease

of implementation, and practicality of testing large scale

networks. In order to effectively develop any protocol with

the help of simulation, it is important to know the different

tools available and the benefits and drawbacks therein

associated. Section 2 of this paper presents the problems

inherent in the use of simulation for testing, specifically

applied to sensor networks. Section 3 presents a number of

sensor network simulators. Section 4 provides analysis,

comparing the simulators in situation-specific circumstances

and making recommendations to the developers of future

sensor simulators.

2. Problem Formation

NS-2 perhaps the most widely used Network Simulator, has

been extended to include some basic facilities to simulate

sensor Networks. However, one of the problems of ns2 is its

object-oriented Design that introduces much unnecessary

interdependency between modules. Such interdependency

sometimes makes the addition of new protocol models

extremely difficult, only mastered by those who have

intimate familiarity with the simulator. Being difficult to

extend is not a major problem for simulators targeted at

traditional networks, for there the set of popular protocols is

relatively small. For example, Ethernet is widely used for

wired LAN, IEEE 802.11 for wireless LAN, TCP for reliable

transmission over unreliable media. For sensor networks,

however, the situation is quite different. There are no such

dominant protocols or algorithms and there will unlikely be

any, because a sensor network is often tailored for a

particular application with specific features, and it is unlikely

that a single algorithm can always be the optimal one under

various circumstances.

Various network simulation environments exist in which

sensor networks can be tested, including GloMoSim,

OPNET, EmStar, SensorSim, ns-2, and many others.

However, because of the unique aspects and limitations of

sensor networks, the existing network models may not lead

to a complete demonstration of all that is happening [1]. In

fact, the developers in charge of ns-2 provide a warning at

the top of their website indicating that their system is not

perfect and that their research and development is always on-

going [2]. Various problems found in different simulators

include oversimplified models, lack of customization,

difficulty in obtaining already existing relevant protocols,

and financial cost [3]. Given the facts that simulation is not

perfect and that there are a number of popular sensor

simulators available, one can conclude that different

simulators are appropriate and most effective in different

situations. It is important for a developer to choose a

simulator that fits their project, but without a working

knowledge of the available simulators, this is a difficult task.

Additionally, simulator developers would benefit by seeing

the weaknesses of available simulators as well as the

weaknesses of their own models when compared with these

simulators, providing for an opportunity for improvement.

For these reasons, it is beneficial to maintain a detailed

description of a number of more prominent simulators

available

International Journal of Computer Science & Emerging Technologies (IJCSET) 141

Volume 1 Issue 2, August 2010

3. Simulators

This paper will present different simulators framework.

These simulators were selected based on a number of criteria

including popularity, published results, and interesting

characteristics and features

3.1 NS -2

NS-2 [2, 4, and 5] is the most popular simulation tool for

sensor networks. It began as ns (Network Simulator) in 1989

with the purpose of general network simulation. Ns-2 is an

object-oriented discrete event simulator; its modular

approach has effectively made it extensible. Simulations are

based on a combination of C++ and OTcl. In general, C++ is

used for implementing protocols and extending the ns-2

library. OTcl is used to create and control the simulation

environment itself, including the selection of output data.

Simulation is run at the packet level, allowing for detailed

results.

 NS-2 sensor simulation is a modification of their mobile

ad hoc simulation tools, with a small number of add-ons.

Support is included for many of the things that make sensor

networks unique, including limited hardware and power. An

extension developed in 2004[4] allows for external

phenomena to trigger events. Ns-2 extensibility is perhaps

what has made it so popular for sensor networks. In addition

to the various extensions to the simulation model, the object-

oriented design of ns-2 allows for straightforward creation

and use of new protocols. The combination of easy in

protocol development and popularity has ensured that a high

number of different protocols are publicly available, despite

not be included as part of the simulator's release. Its status as

the most used sensor network simulator has also encouraged

further popularity, as developers would prefer to compare

their work to results from the same simulator.

NS-2 does not scale well for sensor networks. This is in

part due to its object-oriented design. While this is beneficial

in terms of extensibility and organization, it is a hindrance

on performance in environments with large numbers of

nodes. Every node is its own object and can interact with

every other node in the simulation, creating a large number

of dependencies to be checked at every simulation interval,

leading to an n² relationship. Another drawback to ns-2 is the

lack of customization available. Packet formats, energy

models, MAC protocols, and the sensing hardware models

all differ from those found in most sensors. One last

drawback for NS-2 is the lack of an application model. In

many network environments this is not a problem, but sensor

networks often contain interactions between the application

level and the network protocol level.

3.2 SensorSim

SensorSim is a simulation framework for modeling sensor

networks. It is build upon on the NS-2 simulator and

provides additional features for modeling sensor networks .

SensorSim [6] uses ns-2 as a base, and extends it in three

important ways. First, it includes an advanced power model.

The model takes into account each of the hardware

components that would need battery power in order to

operate. The developers researched the affects of each of

these different components on energy consumption in order

to create their power model. It is included as part of the

sensor node model (Figure 1).

Secondly, SensorSim includes a sensor channel. This was

a precursor to the phenomena introduced to ns-2 in 2004.

Both function in approximately the same way. SensorSim's

model is slightly more complicated and includes sensing

through both a geophone and a microphone. However, the

model is still simplistic, and the developers felt that another

means of including more realistic events was needed.

This led to the third extension to ns-2: an interaction

mechanism with external applications. The main purpose is

to interact with actual sensor node networks. This allows for

real sensed events to trigger reactions within the simulated

environment. In order to accomplish this, each real node is

given a stack in the simulation environment. The real node is

then connected to the simulator via a proxy, which provides

the necessary mechanism for interaction.

One further extension to ns-2 is the use of a piece of

middleware called Sensor Ware. This middleware makes it

possible to dynamically manage nodes in simulation. This

provides the user with the ability to provide the network with

small application scripts than can be dynamically moved

throughout the network. This ensures that it is not necessary

to preinstall all possible applications needed by each node,

and provides a mechanism for distributed computation.

Because of the battery model and sensor channel,

improvements were made in the associated hardware models

when compared with ns-2. However, especially in the case

of the sensing hardware, the models are still very simple and

do not accurately reflect what is found on most sensors. Like

ns-2, SensorSim faces a scalability problem. Additionally,

SensorSim is not being maintained and is not currently

available to the public.

Figure 1. Micro sensor node model in SensorSim

3.3 SENSE

The SENSE is designed to be an efficient and powerful

sensor network simulator that is also easy of use. The

SENSE [7] simulator is influenced by three other models. It

attempts to implement the same functionality as ns-2.

However, it breaks away from the object-oriented approach,

using component based architecture. It also includes support

for parallelization. Through its component-based model and

support for parallelization, the developers attempt to address

what they consider to be the three most critical factors in

simulation: extensibility, reusability, and scalability. SENSE

was developed in C++, on top of COST, a general purpose

International Journal of Computer Science & Emerging Technologies (IJCSET) 142

Volume 1 Issue 2, August 2010

discrete event simulator. It implements sensors as a

collection of static components. Connections between each

component are in the format of in ports and out ports (Figure

2). This allows for independence between components and

enables straightforward extensibility and reusability.

Traversing the ports are packets. Each packet is composed of

different layers for each layer in the sensor. The designers

try to improve scalability by having all sensors use the same

packet in memory, assuming that the packet should not have

to be modified. SENSE's packet sharing model is an

improvement on ns-2 and other object-oriented models that

can not do this, helping improve scalability by reducing

memory use. However, the model is simplistic and places

some communication limitations on the user. While SENSE

implements the same basic functionality as ns-2, it can not

match the extensions to the ns-2 model. Whether because it

is a new simulator, or because it has not achieved the

popularity of ns- 2, there has not been research into adding a

sensing model, eliminating physical phenomena and

environmental effects.

Figure 2. SENSE's sensor node structure with ports

3.4 Mannasim

Mannasim[9] goal is to develop a detailed simulation

framework, which can accurately model different sensor

nodes and applications while providing a versatile test bed

for algorithms and protocols . Numerous challenges make

the study of real deployed sensor networks very difficult and

financially infeasible. At the current stage of the technology,

a practical way to study WSNs is through simulations that

can provide a meaningful perspective of the behavior and

performance of various algorithm This framework is free

software and it can be redistributed under the GNU Public

License

Mannasim is a Wireless Sensor Networks simulation

environment comprised of two solutions: The Mannasim

Framework, The Script Generator Tool

The Mannasim Framework is a module for WSN

simulation based on the Network Simulator (NS-2).

Mannasim extends NS-2 introducing new modules for

design, development and analysis, development and analysis

of different WSN applications. The Script Generator Tool

(SGT) is a front-end for TCL simulation scripts easy

creation. SGT comes blunded with Mannasim Framework

and it's written in pure Java making it platform independent

3.5 EYES WSN Simulation Framework

At the start of the EYES WSN[10] project the template was

needed to be built because the OMNeT + + simulator did not

include support for mobile networks that communicate using

radios. Although the existing ones are quite complicated to

use, we tried to build a simple simulation framework and we

have recently extended it with a language translator tool

named NesCT. With the benefit of this tool we are able to

run most of the code written in TinyOS[11] using Omnet +

+[12] and our simulation framework. This tool is a general

purpose language translator and with some trivial

customization it's also possible to make it work with other

environments too. The framework was designed in such a

way that allows easy modifications of the main parameters

and, at the same time, the implementation details are

transparent to the user.

Mobility is implemented (Random Way Point algorithm

by default). Each node is responsible for defining its own

trajectory and announcing it to the simulator. Nodes

exchange messages using wireless communication. A

message will be heard by all the neighbours situated within

the transmission range (the modules within transmission

range are connected automatically to each-other).The user

can specify if unidirectional or bidirectional links have to be

used. Each node can specify and update its transmission

range independently.The nodes have different kinds of

failing probabilities (individual failures, failures that affect

regions of the map, etc.) Maps for area failures can be

specified and used. Other maps can easily used for obstacles,

fading, etc. In order to perform all of this features we have

chosen to use.

3.6 NS-2 MIUN

Ns-2 is a popular Open source Network Simulator. A lot of

researchers in the community of Wireless Sensor Networks

have used ns2 to verify their research results. However, ns2

is not an Easy tool for the simulation of Sensor Networks,

partially because of its high difficulty in understanding the

ns2 itself, and also because there is currently lack of support

for sensor network simulation.

Ns modified to support wireless sensor network

simulation, with a specialty on intrusion detection

simulation. This enhanced parts is named NS2-MIUN[13]

The enhanced features include.

The Integration of NRL's phenomenon node, which

enables the ability of simulating an environmental

phenomenon.

The Integration of AODVUU, which is an AODV

Routing Protocol implementation that follows AODV

specification better than the one included in the Standard ns2

Release.

The definition of a new packet type PT_SensorApp,

which is used to simulate the type of packets used by sensor

application.

 The support of dynamic packet destination configuration.

In the standard ns2 release, the <src, dst> pair is configured

by statically binding an agent in the source node with an

agent in the destination node in the TCL scenario file. This

means a source node needs to configure multiple source

agents when there are multiple potential recipients and bind

http://tcl.sourceforge.net/
http://java.sun.com/
http://translate.googleusercontent.com/translate_c?hl=en&sl=zh-TW&u=http://www.isi.edu/nsnam/ns/&prev=/search%3Fq%3Dhow%2Bto%2Bscale%2Bns2%2Bfor%2Bwireless%2Bsensor%2Bnetwork%26hl%3Den&rurl=translate.google.co.in&usg=ALkJrhgSaAM3yeca8dC_t6M2SVhcPJJ3Vw
http://translate.googleusercontent.com/translate_c?hl=en&sl=zh-TW&u=http://cs.itd.nrl.navy.mil/pubs/docs/nrlsensorsim04.pdf&prev=/search%3Fq%3Dhow%2Bto%2Bscale%2Bns2%2Bfor%2Bwireless%2Bsensor%2Bnetwork%26hl%3Den&rurl=translate.google.co.in&usg=ALkJrhhLzT1AngRqlpUL6xbmRKa-n3d0rA
http://translate.googleusercontent.com/translate_c?hl=en&sl=zh-TW&u=http://core.it.uu.se/core/index.php/AODV-UU&prev=/search%3Fq%3Dhow%2Bto%2Bscale%2Bns2%2Bfor%2Bwireless%2Bsensor%2Bnetwork%26hl%3Den&rurl=translate.google.co.in&usg=ALkJrhjXgLJMCPabv67epRpPDq67RU5knA

International Journal of Computer Science & Emerging Technologies (IJCSET) 143

Volume 1 Issue 2, August 2010

each potential <src, dst> pair manually at the configuration

file. This doesn't scale well in a dynamic wireless sensor

network, where the destination node can vary over time. This

drawback is fixed by allowing run-time <src, dst> binding.

The integration of an intrusion detection module. It is a

module inserted between the MAC layer and the network

layer that captures all packets and impose intrusion detection

analysis.The imitation of different attacks. The attacks

implemented include wormhole, symbil / ID spoofing, DOS /

DDOS, sinkhole, etc. An Extension for Simulating multi-

homed nodes [14]ns-2 also is provided.

4. Analysis

This paper by no means presents an exhaustive list of sensor

simulators. But the most of the issues facing the developers

of sensor networks can be seen in this paper. Of course,

many decisions must be made for specific situations rather

than following all encompassing guidelines.

The developers must decide whether they want a simulator

or an emulator. Each has advantages and disadvantages, and

each is appropriate in different situations. Generally, a

simulator is more useful when looking at things from a high

view. The effect of routing protocols, topology, and data

aggregation can be see best at a top level and would be more

appropriate for simulation. Emulation is more useful for

fine-tuning and looking at low-level results. Emulators are

effective for timing interactions between nodes and for fine

tuning network level and sensor algorithms.

If the developers decide to build a simulator, another

design level decision that must be made is whether to build

their simulator on top of an existing general simulator or to

create their own model. If development time is limited or

there is one very specific feature that the developers would

like to use that is not available, then it may be best to build

on top of an existing simulator. However, if there is

available development time and the developers feel that they

have a design that would be more effective in terms of

scalability, execution speed, features, or another idea, then

building a simulator from the base to the top would be most

effective.

In building a simulator from the bottom up, many choices

need to be made. Developers must consider the pros and

cons of different programming languages, the means in

which simulation is driven (event vs. time based),

component-based or object oriented architecture, the level of

complexity of the simulator, features to include and not

include, use of parallel execution, ability to interact with real

nodes, and other design choices. While design language

choices are outside of the scope of this paper, there are some

guidelines that appear upon looking at a number of already

existing simulators.

Most simulators use a discrete event engine for efficiency.

Component-based architectures scale significantly better

than object-oriented architectures, but may be more difficult

to implement in a modularized way. Defining each sensor as

its own object ensures independence amongst the nodes. The

ease of swapping in new algorithms for different protocols

also appears to be easier in object-oriented designs.

However, with careful programming, component based

architectures perform better and are more effective.

Generally, the level of complexity built into the simulator

has a lot to do with the goals of the developers and the time

constraints imposed. Using a simple MAC protocol may

suffice in most instances, and only providing one saves

significant amounts of time. Other design choices are

dependent on intended situation, programmer ability, and

available design time.

5. Conclusion
The goals of this paper were to provide background on a

number of different sensor network simulators and present

the best and worst features of each. The purpose was three-

fold. First, knowing the strengths and weaknesses of a

number of different simulators is valuable because it allows

users to select the one most appropriate for their testing.

Second, the developers of new simulators are well served

knowing what has worked in previous simulators and what

has not. It also allows user to know how to scale NS-2 to

suite their problem for simulating sensor networks

References

[1] S. Park, A. Savvides and M. B. Srivastava. Simulating

Networks of Wireless Sensors. Proceedings of the 2001

Winter Simulation Conference, 2001.

[2] The Network Simulator – ns-2.

http://www.isi.edu/nsnam/ns.

[3] Vlado Handziski, Andreas Köpke, Holger Karl, and

Adam Wolisz. “A Common Wireless Sensor Network

Architecture?”. Sentzornetze, July 2003.

[4] Ian Downard. Simulating Sensor Networks in ns-2. NRL

Formal Report 5522, April, 2004.

[5] Valeri Naoumov and Thomas Gross. Simulation of Large

Ad Hoc Networks. ACM MSWiM, 2003.

[6] Sung Park, Andreas Savvides, and Mani B.Srivastava.

SensorSim: A Simulation Framework for Sensor Networks.

ACM MSWiM, August, 2000.

[7] Gilbert Chen, Joel Branch, Michael Pflug, Lijuan Zhu,

and Boleslaw Szymanski.SENSE: A Sensor Network

Simulator. Advances in Pervasive Computing and

Networking, 2004.

[8] Jonathan Pollet, et al. ATEMU: A Fine-Grained Sensor

Network Simulator. Proceedings of SECON’04, First IEEE

Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, 2004.

[9] The Mannasim Framework

http://www.mannasim.dcc.ufmg.br/

[10] Eye WSN Framework

http://wwwes.cs.utwente.nl/ewsnsim/

[11] Philip Levis, Nelson Lee, Matt Welsh, and David

Culler. TOSSIM: Accurate and Scalable Simulation of

Entire TinyOS Applications. Proceedings of SenSys’03,

First ACM Conference on Embedded Networked Sensor

Systems, 2003.

[12] C. Mallanda, A. Suri, V. Kunchakarra, S.S. Iyengar, R.

Kannan, and A. Durresi. Simulating Wireless Sensor

Networks with OMNeT++.

 [13]NI-MIUM

http://apachepersonal.miun.se/~qinwan/resources.htm.

[14] Simulating Wireless Multihomed Node in NS-2

,Qinghua Wang, Tingting Zhang, Department of Information

Technology and Media, Mid Sweden University, Sundsvall,

SE 85170, Sweden

http://www.mannasim.dcc.ufmg.br/
http://wwwes.cs.utwente.nl/ewsnsim/
http://apachepersonal.miun.se/~qinwan/resources.htm

